

Welcome to Noonian Development Documentation

This documentation is divided into two parts:

Development Guide

A guide meant to be read in sequence to learn how to develop the system.

Reference

The nitty-gritty technical details you’ll probably need to refer back to while developing on the system.

Todo

User Guide: general DBUI usage for non-developer end-users of applications built from the DBUI. Showing how to use features such as the query editor, Perspective/column editor, CSV export, …

Contents:

	Development Guide
	Introduction

	Getting Started

	DBUI Basics

	Data Definition

	Adding Business Logic

	Adding Users and Roles

	Installing and Building Packages

	Documentation

	Application and Unit Testing

	Logging

	Extended DBUI Features

	Building a Non-DBUI Angular Application

	Advanced Customization

	Indices and tables

	Noonian Reference
	Admin, Configuration, and Deployment

	Development Reference

	Noonian Core API

Indices and tables

	Index

	Module Index

	Search Page

Development Guide

This section is will walk you through the key concepts and structures needed for developing an application with Noonian.

Contents:

	Introduction
	What is it?

	What can I do with it?

	Getting Started
	Installation

	Instance Setup

	DBUI Basics
	A Tour of the DBUI

	Configuration

	Querying Data

	Perspectives and Layouts

	Menus

	Custom Pages

	UI Actions

	Data Definition
	The Business Object

	Creating a Business Object Definition

	Indexing

	Adding Business Logic
	Data Triggers

	Web Services

	Code Modules

	Member Functions

	Schedule Triggers

	Adding Users and Roles
	Menus and Perspectives

	Data Access Controls

	Installing and Building Packages

	Documentation

	Application and Unit Testing

	Logging

	Extended DBUI Features
	DBUI Pivot Page

	Reporting

	Internationalization

	Building a Non-DBUI Angular Application
	Angular Components

	Advanced Customization
	Custom Field Types

	Custom Query Operations

Indices and tables

	Glossary

	Index

	Module Index

	Search Page

Introduction

What is it?

	It is a MEAN-based integrated platform for rapid development of
full-featured browser-based applications.

	It is a framework for defining data objects for persistence, and for
creating business logic around those objects.

	It is its own browser-based development environment for full-stack
javascript applications.

What can I do with it?

	Define your data objects using meaningful field types.

	Edit those objects within a rich, customizable UI that allows you to
build a complete CRUD interface with a few lines of JSON.

	Build your application’s UI entirely based on that built-in UI by
adding buttons, triggers, web services, user roles and permissions,
and custom pages.

	AND/OR build your application’s UI to be completely distinct,
leveraging Noonian to organize the Angular components, and for its
data APIs and web services.

Getting Started

This section will guide you through the process of installing Noonian and its dependencies, and setting up a fresh instance.

These instructions should generally apply to Linux, Windows, and MacOS hosts.

Installation

The dependencies to required by Noonian are:

	Node.js [https://nodejs.org/en/download/]

	MongoDB [https://www.mongodb.com/download-center?jmp=nav#community]

	bower [https://bower.io]

Mongo DB

Follow the instructions in the MongoDB documentation [https://docs.mongodb.com/manual/installation/?jmp=footer&_ga=2.23881914.1626274738.1558626728-547197231.1550946579#mongodb-community-edition-installation-tutorials] to get MongoDB installed on your system.

Ideally, you will be able to perform a system-wide installation and run
it as a service. However, if you do not have root access to the machine
on which you are running, it is possible to run it from a directory
under user home directory.

Node.js

Package managers provide the easiest way to get the latest version
installed on your system. The nodejs website provides a comprehensive
list of available packages [https://nodejs.org/en/download/package-manager/] for most operating system hosts.

The Node.js installation includes the Node Package Manger npm <https://npmjs.com>, which
will be used for the rest of the installation process.

Bower

At the commandline, install bower globally using npm:

npm install -g bower

If you performed a system-wide node install, you’ll need to perform the above command as the root or administrative user.

Noonian

At the commandline, install noonian globally with npm:

sudo npm install -g noonian

NOTE: if you are installing to a system-wide node install (as opposed
to a node installation that is owned by a non-root user), there may be
issues installing dependencies compiled via node-gyp. To get around the
issue, use the “unsafe-perm” parameter:

npm install --unsafe-perm -g noonian

This will be resovled in a future version that will have refactored out
any dependencies that are not pure javascript.

Instance Setup

First, create a directory for your instance, and make it your current
working directory.

mkdir my-noonian-instance
cd my-noonian-instance

Then use the Noonian CLI to initialize the directory
as a noonian instance:

noonian init my-instance

This will create a new file instance-config.js, which may be edited
to configure the instance.

Edit the configuration file, and then use the CLI to bootstrap the
database for the instance:

noonian bootstrap -p adminPassword

This will initialize the configured database with the core system,
setting the initial password for admin to “adminPassword”.

Use the CLI to start the instance:

noonian start

This will start the instance as a background service (forked process),
and direct stdout and stderr to stdout.log and stderr.log.

You may stop it with the CLI as well:

noonian stop my-instance

(if your current working directory is the instance directory, the
“my-instance” can be omitted)

DBUI Basics

Noonian’s graphical user interface is referred to as DBUI: an initialism for “DataBase User Interface”.

The DBUI is what you see when you log in, and provides all of the screens for viewing and editing Business Objects in the system. It provides a rich interface for managing your data, and is designed to serve as a starting point for your database application.

This section will guide you through the key concepts around the DBUI, and how to customize and extend it to build your own application.

Contents:

	A Tour of the DBUI
	The Navbar

	The Sidebar

	Home Screen

	List, Edit, and View Business Objects

	Configuration

	Querying Data

	Perspectives and Layouts

	Menus

	Custom Pages

	UI Actions

A Tour of the DBUI

When you first log in to a fresh instance, you are greeted with the default home screen:

[image: Noonian DBUI Home Screen]

At the top we’ve got the navbar, on the left we’ve got the sidebar, and the majority of the screen is our main content area.

The Navbar

[image: Navbar]

The top bar we’ll refer to as the navbar (this is by convention; in actuality most navigation in a Noonian system occurs via the sidebar)

Starting from the left, the navbar components are:

Page Title

Displays the configured instance name. When clicked, takes user to the configurable “home” screen, which is the same screen displayed when the user first logs in.

System Menu

[image: System Menu]

To the right of the title, the configured dropdown menus are displayed. Menus can be customized based on user role.

The System menu is the default navbar menu for the system admin role, and shows logical groupings of all Business Object classes in the system.

Notifications

The bell icon on the right-hand side of the navbar contains a list of alert messages that the system has displayed to the user during their session.

User Menu

[image: User Menu]

The rightmost icon on the navbar is for user profile management (password reset, etc.) and log-out.

The Sidebar

[image: Sidebar]

The sidebar is the primary mechanism by which the user navigates a Noonian system. The content of the sidebar is customizable based on user role.

The default sidebar for the system admin role is the Developer Menu, providing access to the components used for developing a Noonian application.

Gear Menu

[image: Sidebar Gear Menu]

The gear icon on the upper left-hand side of the sidebar allows the user to select which sidebar menu is displayed.

Additionally, it provides an option to collapse all submenus on the sidebar.

Minimize and Expand

[image: ../../_images/sidebar-minimize.png]

The double chevron icon on the top right of the sidebar provides a way to reduce the size of the sidebar. Clicking it reduces the display to show only icons for each submenu title. In minimized mode, a submenu is exposed when the mouse hovers over its submenu icon.

Home Screen

[image: Home Screen]

When the user initially logs in, the main content area is populated with a configurable home screen. This is the same screen that is shown when the user clicks the title on top left of the navbar.

The default home screen on a fresh instance provides information on how to customize it.

List, Edit, and View Business Objects

The core functionality of the Noonan DBUI is in editing, viewing and querying Business Objects in the database. There are 3 primary screens for doing so: list, edit, and view.

List

The list screen displays a list of Business Objects in the system. It includes search and query tools and configurable action buttons.

It happens that all of the links on the Developer Menu actually link to a list screen. As an example, let’s take a look at the configuration list, since there are a number of objects to be seen on a fresh instance:

[image: Sidebar -> Admin -> Configuration]

[image: Config List]

You see a filtered list of Config Business Objects in the system, and several buttons and tools.

[image: Config List With Labels]

	Action Bar

	Shows buttons for configured actions for the current perspective.

	Search/Query Tool

	Allows for a quick text search, or opening the Query Builder to perform more sophisticated query on the data.

	Gear Menu

	Shows a dropdown to perform table-related actions, such as editing the displayed columns, or refreshing or exporting the data.

	Record Actions

	Shows record-specific actions that can be invoked for a specific row. The View and Edit actions are generally present for the default list perspectives.

Edit

The edit screen displays a form for editing a single Business Object. It includes layout editing tools and configurable action buttons.

As an example, let’s take a look at an edit screen for a User Business Object:

[image: Sidebar -> Admin -> Users]

[image: User Edit]

	Action Bar

	Shows buttons for configured actions for the current perspective.

	Layout Editor

	Shows a dialog that allows the user to change the fields displayed and the layout of the form.

	Record Actions

	Shows record-specific actions that can be invoked for the object being edited. The Save, Delete, View, and Export actions are generally present for the default edit perspectives.

View

The view screen is very similar to an edit screen, the obvious difference being the editability of the displayed Business Object.

As an example, let’s look at the corresponding view for the User object we examined above. Use the View button from the edit screen:

[image: view user]

[image: User Edit]

	Action Bar

	Shows buttons for configured actions for the current perspective.

	Layout Editor

	Shows a dialog that allows the user to change the fields displayed and the layout of the form.

	Record Actions

	Shows record-specific actions that can be invoked for the object being edited. The Edit, Delete, Duplicate, and Export actions are generally present for the default view perspectives.

Configuration

Querying Data

TODO

Perspectives and Layouts

TODO

Menus

TODO

Custom Pages

UI Actions

Data Definition

The Business Object

Business Objects are the basic building blocks of any Noonian application. Defining a Business Object is akin to defining a database table in the SQL world, and resembles class definition in the Object Oriented Programming world.

In Noonian, you define the the data schema for your application by
creating a set of Business Object Definitions.

When you create a Business Object Definition, you’re defining structure
for a particular class of Business Object that you want to persist.

That class of Business Object you defined translates to several components
in a Noonian system:

	A corresponding collection in MongoDB that contains the persisted objects

	An API within the server-side Node.js environment for querying, reading, and
updating the objects

	An API provided by an Angular.js service that allows you to query, read and
update from the client-side.

	A set of screens for viewing, querying, and updating the objects
within the Angular.js front-end, called the DBUI.

Creating a Business Object Definition

Expand the sidebar menu Data Definition / Serverside Dev; and select
BusinessObjectDefs

[image: BusinessObjectDefs Menu]

BusinessObjectDefs Menu

You are shown the list of BusinessObjectDef’s in the system. Select the
New button at the top to create a new one.

[image: BusinessObjectDef List -> New]

BusinessObjectDef List -> New

You are shown a form that allows you to specify the fields for your new
Business Object Definition. Let’s demonstrate with a basic Person class:

[image: New BusinessObjectDef]

New BusinessObjectDef

The definition is simply a JSON object mapping each field name to its
respective Type Descriptor :

{
 "name":"string",
 "birthday":"date",
 "phone_number":"phone",
 "address":"physical_address",
 "profile_picture":"image",
 "wears_glasses":"boolean",
 "number_of_children":"integer",
 "misc_notes":"text",
 "user_account":{"type":"reference","ref_class":"User"}
}

Notice in the example, most of the types are described simple strings:
“string”, “date”, “boolean”, etc. This is a shorthand for those types
that require no more than a single string. The user_account field is
the exception: its type is “reference”, so we need to specify what
class of objects it should reference.

Also perhaps you’ve noticed how the fields “name” and “misc_notes”, have the types “string” and “text”, and you’re wondering the purpose of the distinction - isn’t a “text” field is just a long string? Indeed it is! However, by calling it a “text” field, we are 1) creating a more precise description, 2) telling the display logic to use the larger text block for editing it, and 3) telling the system to index it differently.

Let’s go ahead and save the BusinessObjectDef. Notice how those types get
expanded after you save:

{
 "name": {
 "type": "string"
 },
 "birthday": {
 "type": "date"
 },
 "phone_number": {
 "type": "phone"
 },
 "address": {
 "type": "physical_address"
 },
 "profile_picture": {
 "type": "image"
 },
 "wears_glasses": {
 "type": "boolean"
 },
 "number_of_children": {
 "type": "integer"
 },
 "misc_notes": {
 "type": "text"
 },
 "user_account": {
 "type": "reference",
 "ref_class": "User"
 }
}

When you save the a BusinessObjectDef, any single-string values get replaced by a full Type Descriptor. The Type Descriptor fully describes a field’s type, and at its simplest consists of a single “type” property. Other properties on a Type Descriptor add neccessary detail in describing the fields type. Some are mandatory (e.g. “ref_class” for a reference field) , and others are optional (e.g. you may specify a minimum or maximum value of an integer field with a min or max property.)

Please see the reference page for Field Types for a complete list of available field types and their respective type descriptor properties.

Indexing

coming soon

Todo

pending implementation of BusinessObjectDef index specification

Adding Business Logic

This section is will walk you through the structures available to you when developing business logic in your Noonian application.

Contents:

	Data Triggers

	Web Services

	Code Modules

	Member Functions

	Schedule Triggers

Data Triggers

TODO

Web Services

TODO

Code Modules

TODO

Member Functions

TODO

Schedule Triggers

TODO

Adding Users and Roles

Menus and Perspectives

TODO

Data Access Controls

TODO

Installing and Building Packages

TODO

Documentation

Most of the Business Objects you create in the process of building an application have a Documentation field you can use to include relevant documentation for the respective components. These fields support JSDoc and reStructuredText, and can be used to generate API and development documenation for your Noonian applications.

TODO

Todo

pending implementation of Noonian Doc Generation

	..todo::

	Application Diagrams add-on

Application and Unit Testing

Noonian integrates Jasmine, Selenium, and Protractor for creating unit tests for your applications.

TODO

Todo

Pending implementation of Jasmine/Selenium/Protractor integration

Logging

TODO

Extended DBUI Features

This section takes you through several useful DBUI features not yet mentioned in this guide.

Contents:

	DBUI Pivot Page

	Reporting

	Internationalization

DBUI Pivot Page

TODO

Reporting

TODO

Internationalization

TODO

Building a Non-DBUI Angular Application

The guide thus far has show how it is possible to build a full-featured application by extending and customizing the DBUI. This section describes how you can use Noonian to build an Angular.js application that is not based on DBUI. In this scenario, it is still possible to leverage the DBUI and Noonian’s data layer and APIs for your application.

A practical example of a use case might be a lightweight Angular-based front-end that leverages Noonian for the data layer and business logic, and the DBUI as an administrative back-end.

Note: A basic understanding of Angular.js compoenents is assumed for this section

Angular Components

Advanced Customization

This section is describes how to extend the fundamental objects of Noonian and the DBUI.

Contents:

	Custom Field Types

	Custom Query Operations

Custom Field Types

TODO

Custom Query Operations

TODO

Glossary

Noonian Terminology

	Business Object

	A persisted data object.

	DBUI

	The graphical user interface of Noonian: “DataBase User Interface”

	Perspective

	A configuration object that describes how to render a DBUI screen: layout, table columns, action buttons, etc.

	RecordAction

	An action within the DBUI that is tied to a Business Object when invoked.

Related Jargon

	MEAN

	A stack of technologies for web development that consists of Javascript and JSON for both front and back-end:
M = MongoDB
E = Express
A = AngularJS
N = Node.js

Noonian Reference

Detailed technical documentation for Noonian development and administration.

Contents:

	Admin, Configuration, and Deployment
	Instance Configuration

	Command Line Interface

	Deployment

	Development Reference
	Data Model

	Indexing

	Query Ops

	References

	Config

	Auth

	Data Export

	GridFS

	Packaging

	Web Sockets

	Noonian Core API

Admin, Configuration, and Deployment

Contents:

	Instance Configuration
	Configuration File

	Instance Directory Structure

	Command Line Interface
	Instance Set-up

	Process Management

	Utilities

	Installing Bash Autocompletion

	Deployment
	PM2

	Docker

Instance Configuration

Configuration for a Noonian instance is stored in a javascript file in
the base of the instance directory: instance-config.js. A default is
generated from a template when an instance is initialized using the CLI.

Configuration File

Required Parameters

At instance initialization, all required parameters are
populated/generated with reasonable defaults.

instanceName

A name used for referring to the instance via the CLI. Should be unique
across instances on a server for the CLI to work properly.

instanceId

An identifier used in versioning the persisted business objects. It
should be short; by default it matches the instance name.

serverListen

TCP Port and address on which to bind. On initialization, the Noonian
CLI examines the config files for all configured instances on the
machine and chooses a port number by adding 1 to the highest one found.

serverListen: {
 port: 11100,
 host: '127.0.0.1'
}

mongo

MongoDB connection string and options. Initialization defaults to
localhost

mongo: {
 uri: 'mongodb://localhost/noonian-myinstance'
}

secrets

Secret string used for signing the auth tokens for authentication.
Initialization generates a random UUID.

secrets: {
 session: '1f6885e7-36a8-4dd9-909e-d585e5bd0879'
}

Logging

By default, log level is set to debug, writing logs to instance.log (all
log messages) and error.log (only error messages).

Logging can be configured via either of the following parameters.

Alternatively, logging can be configured via the logging-config.js in
the instance directory.

logLevel

For simple configuration if the default files/formats are sufficient.
Set it to one of:

error, warn, info, verbose, debug, silly

Logs messages at or above the configured level are written to
instance.log, and errors to error.log.

loggers

Provides more detailed control over log formats and transports.

Optional Parameters

urlBase (string)

A path under which the noonian instance will be served.

Use urlBase if noonian will be served to a path other than the root of
the domain. For example, one domain can host multiple noonian instances
as such: mydomain.com/instance1, mydomain.com/instance2

enableBackRefs

Enable “back reference” processing on reference fields.

enableHistory

Instance Directory Structure

The files and directories in the instance directory are described below.

	instance-config.js

	client - base directory for static content served from the
filesystem by the webserver (this directory is checked BEFORE client
directory of the core app listed above)
* bower_components - holds bower dependencies of packages
installed on this instance

	node_modules - holds any npm dependencies of packages installed
on this instance

	[pkg-key] - if package building with filesystem sync is enabled,
data updates are synced to this directory

Command Line Interface

Usage: noonian [options] [command]

Options:
 -V, --version output the version number
 -h, --help output usage information

Commands:
 start [options] [instanceName] launch an instance
 stop [options] [instanceName] stop a running instance
 restart [options] [instanceName] restart a running instance
 env [options] [instanceName] show environment variables for launching an instance (returns source-able list of variable export lines)
 list list configured instances
 status list the currently-running Noonian instances
 startall Start all of the configured Noonian instances
 init [options] <instanceName> initialize directory for a instance
 bootstrap [options] [instanceName] bootstrap database for an instance
 add [options] add an existing instance to the index
 remove <instanceName> remove an instance from the instance index
 dbdump [options] [instanceName] call mongodump to create a dump of the database
 dbshell [options] [instanceName] start mongo shell for the instance's database
 open [options] [instanceName] launch browser window
 watch [options] [instanceName] watch stdout and stderr of an instance
 pm2-eco generate pm2 ecosystem JSON (print to stdout)

Instance Set-up

init, bootstrap, add, remove

Process Management

The CLI contains basic functionality for managing Noonian instances on the local machine. These features are meant for use in a development envrionment. For a production deployment, either a Docker container or a more sophisticated process management tool such as PM2 is recommended.

Start / Stop / Restart

Status

PM2 Ecosystem Generation

Utilities

Database Dump

Database Shell

Get Environment Variables

Installing Bash Autocompletion

The Noonian CLI has a bash auto-completion script so commands and
instance names can be auto-completed at the command prompt.

If you have root access to the system, you can create a symbolic link in
/etc/bash_completion.d to the
NOONIAN_HOME/template/bash_completion.d

ln -s /path/to/installation/node_modules/noonian/template/bash_completion.sh /etc/bash_completion.d/noonian

If you do not have root access, you can simply source the
bash_completion.sh in your .bashrc. (Alternatively, refer to this
discussion for other
options [https://serverfault.com/questions/506612/standard-place-for-user-defined-bash-completion-d-scripts])

Deployment

This document describes various options for production deployment of a Noonian instance.

PM2

Run Noonian as a service using PM2 [https://pm2.keymetrics.io/]

Proxy through Apache

Docker

There are multiple scenarios for deploying Noonian using docker:

	All-in-one, single instance

	All-in-one, multi-instance

	External MongoDB, single-instance Noonian container

	External MongoDB, multi-instance Noonian container

All-in-one Container

Full Node + MongoDB + Noonian stack in one image/container.

Docker-Compose Stack

Two separate containers: one MongoDB, one Node.js/Noonian

Development Reference

This documentation provides detailed technical information for Noonian development to supplement the API documentation.

Contents:

	Data Model

	Indexing

	Query Ops

	References

	Config

	Auth

	Data Export

	GridFS

	Packaging

	Web Sockets

Data Model

Indexing

TODO

Query Ops

TODO

References

TODO

Config

TODO

Auth

TODO

Data Export

TODO

GridFS

TODO

Packaging

Web Sockets

TODO

Noonian Core API

TODO: generate from sourcecode/jsdoc

Index

 B
 | D
 | M
 | P
 | R

B

 	
 	Business Object

D

 	
 	DBUI

M

 	
 	MEAN

P

 	
 	Perspective

R

 	
 	RecordAction

 _images/sidebar-gear-menu.png
Switch Sidebar

Menu

web Services
Enumerations
LabelGroups

B DBUI Customization

@ Web Resources

@ Angular

& Admin

M

~

_images/sidebar-minimize.png
5

g e Definition /
Serverside Dev

BusinessObjectDefs
Data Triggers
CodeModules
Web services
Enumerations
LabelGroups
B DBUI Customization
@ Web Resources
@ Angular

& Admin

<

<

=)

mepuma

_images/navbar.png
Noonian Demo System admin

_images/sidebar-config.png
Data Definition /

S srerside bev N
B DBUI Customization ¢
& Web Resources <
B Angular <
& Admin v

Configuration

Users

Roles

Data Access Controls

_images/user-edit-annotated.png
Action Bar

Edit User admin

Layout Editor

‘ Bsave H © Delete H @ view H &, Export ‘

Assigned n ROLE_SYSADMIN Password

Roles Reset
Required

Record Actions

Password ‘ (unchanged)

_images/user-edit-to-view.png
Edit User admin

Bsave | @opelete || @ vView

Name admin Is Disal

_images/sidebar-user-edit.png
e yser List

g Daabefniion/

Serverside Dev
M DBUI Customization < X | textsearch

advanced query...
& Web Resources <
Filter: ALL records
B Angular < 1 records total
& Admin o o Name © Assigned Roles IsDisabled Password Reset Requirec
>
Configuration @[# _agmin ROLESYSADMIN no no

Users

1 records total
Roles

Data Access Controls

_images/sidebar.png
o «

g e Definition /
Serverside Dev

BusinessObjectDefs
Data Triggers
CodeModules

Web Services
Enumerations
LabelGroups

DBUI Customization

=
@ Web Resources
@ Angular

Admin

<

_images/user-menu.png
Jser Profile

_images/user-view-annotated.png
Action Bar

View User admin Layout Editor

uplicate ‘ &, Export ‘

‘ @ edit H © pelete H

Record Actions

Name admin Is Disabled
Assigned ROLE_SYSADMIN Password no
Roles. Reset

Required

Last Login July 08, 2020 1:06 PM

_images/home-screen-full.png
nian Derr

o Welcome to the Noonian DBUI!
= Da Definition /
= Serverside Dev

If you're reading this, you can celebrate a succssful installation of
BusinessObjectDefs Noonian!
This Is the default home page, which is a DBUI Custom Page
(editable here, also accessible via the sidebar menu: DBUI
Customization - Custom Pages)

Data Triggers

CodeModules
. You can get back to this "home" screen by clicking the title in the
b Services
upper-left hand corner of the Nav bar above. You can change this
behavior by modifying the configuration parameter
dbui.homeAction

Enumerations

LabelGroups Documentation can be found on the Gitlab Wiki

B DBUI Customization < Issues can be reported on the Gitlab repository

& Web Resources <
B Angular <

& Admin <

_images/home-screen.png
Welcome to the Noonian DBUI!

If you're reading this, you can celebrate a succssful installation of
Noonian!

This i the default home page, which is a DBUI Custom Page
(editable here, also accessible via the sidebar menu: DBUI
Customization - Custom Pages)

You can get back to this "home" screen by clicking the title in the
upper-left hand corner of the Nav bar above. You can change this
behavior by modifying the configuration parameter
dbuihomeAction

Documentation can be found on the Gitlab Wiki

Issues can be reported on the Gitlab repository

_images/config-list-annotated.png
Config List

Table “Gear Menu”
x [o searen

advanced query.

i Ky © Value
Record Actions
" dbuldefauitpaging Pdefaultsize":10/sizes"15,102030,4050])
‘dbuthomeAction {#params*:{’key’s*dbul core.oob_home"}'state
{"navbar":"

~dbul.user profile™

es not co
13 records total (showing 1 to 10)

Action Bar

_images/config-list.png
Config List

X | textsearch

lolry
lolry
lolry

folry

advanced query...

Filter: (Key does

Show| 10 :IpErpage

Key ©

dbut.defaultpaging

dbui.homeAction

dbul.menuConfig

dbui.userprofileAction

*sys.dbui ive') AND (Key does in 'sys.db
13 records total (Showing 1 to 10)

Value

{"defaultsize":10,"sizes"[5,10,20,30,40,50]}

{'params":{'key":"dbul.core.oob_home"},"state":"dbui. 3
4
{'navbar""sys.dbul.sysadmin_navbar","sidebars""dbul.menu.dev","dbui.menu.sys_dev']}
4

{'state":"dbul.user_profile"}

_images/navbar-system-menu.png
Serverside/DB Dev
Clientside Dev
Low-Level DBUI
Web Resources
Admin

Ref Data
Packaging

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Noonian Development Documentation

 		
 Development Guide

 		
 Introduction

 		
 What is it?

 		
 What can I do with it?

 		
 Getting Started

 		
 Installation

 		
 Instance Setup

 		
 DBUI Basics

 		
 A Tour of the DBUI

 		
 Configuration

 		
 Querying Data

 		
 Perspectives and Layouts

 		
 Menus

 		
 Custom Pages

 		
 UI Actions

 		
 Data Definition

 		
 The Business Object

 		
 Creating a Business Object Definition

 		
 Indexing

 		
 Adding Business Logic

 		
 Data Triggers

 		
 Web Services

 		
 Code Modules

 		
 Member Functions

 		
 Schedule Triggers

 		
 Adding Users and Roles

 		
 Menus and Perspectives

 		
 Data Access Controls

 		
 Installing and Building Packages

 		
 Documentation

 		
 Application and Unit Testing

 		
 Logging

 		
 Extended DBUI Features

 		
 DBUI Pivot Page

 		
 Reporting

 		
 Internationalization

 		
 Building a Non-DBUI Angular Application

 		
 Angular Components

 		
 Advanced Customization

 		
 Custom Field Types

 		
 Custom Query Operations

 		
 Indices and tables

 		
 Noonian Reference

 		
 Admin, Configuration, and Deployment

 		
 Instance Configuration

 		
 Command Line Interface

 		
 Deployment

 		
 Development Reference

 		
 Data Model

 		
 Indexing

 		
 Query Ops

 		
 References

 		
 Config

 		
 Auth

 		
 Data Export

 		
 GridFS

 		
 Packaging

 		
 Web Sockets

 		
 Noonian Core API

_images/DataDefinition2.png
e < BusinessObjectDef List
« Data Definition /

_static/comment-close.png

_images/DataDefinition3.png
New BusinessObjectDef

Class Name Person 1s system O
superclass o | (empty) Is Abstract O
Documentation For demonstraiting a simple business object definition.
g
Definition K
3
2
5
6
7
8
s
10 ref_class: "User'}
1oy

_static/comment.png

_images/DataDefinition1.png
o

Data Definition /
Serverside Dev

BusinessObjectDefs
Data Triggers
CodeModules
Web Services

Enumerations.

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/up-pressed.png

_static/up.png

