
Noonian Documentation
Release 0.9.1

Eugene Newall-Lockett

Jan 26, 2021

CONTENTS:

1 Development Guide 3
1.1 Introduction . 3
1.2 Getting Started . 3
1.3 A Tour of the DBUI . 5
1.4 Data Definition . 10
1.5 Basics of Building a DBUI Application . 14
1.6 Adding Business Logic . 15
1.7 Adding Users and Roles . 16
1.8 Installing and Building Packages . 16
1.9 Documentation . 17
1.10 Application and Unit Testing . 17
1.11 Logging . 17
1.12 Extended DBUI Features . 17
1.13 Building a Non-DBUI Angular Application . 18
1.14 Advanced Customization . 18
1.15 Indices and tables . 18

2 Noonian Reference 21
2.1 Admin, Configuration, and Deployment . 21
2.2 Development Reference . 24
2.3 Noonian Core API . 28

3 Indices and tables 43
3.1 Change Log . 43
3.2 GITLAB README . 43

Index 45

i

ii

Noonian Documentation, Release 0.9.1

This documentation is divided into two parts:

Development Guide

A guide meant to be read in sequence to learn how to develop the system.

Reference Materials

The detailed technical details you’ll probably need to refer back to while developing on the system.

Todo: We need a User Guide: general DBUI usage for non-developer end-users of applications built from the DBUI.
Showing how to use features such as the query editor, Perspective/column editor, CSV export, . . .

CONTENTS: 1

Noonian Documentation, Release 0.9.1

2 CONTENTS:

CHAPTER

ONE

DEVELOPMENT GUIDE

This section is will walk you through the key concepts and structures needed for developing an application with
Noonian.

1.1 Introduction

1.1.1 What is it?

• It is a completely Free (Libre) MEAN-based integrated platform for rapid development of full-featured browser-
based applications.

• It is a framework for defining data objects for persistence, and for creating business logic and user interface
around those objects.

• It is its own browser-based development environment for full-stack javascript applications.

1.1.2 What can I do with it?

• Define your data objects using meaningful field types.

• Edit those objects within a rich, customizable UI that allows you to create a fully-functional CRUD interface
with a few lines of JSON.

• Build your application’s UI entirely based on that built-in UI by adding buttons, triggers, web services, user
roles and permissions, and custom pages.

• AND/OR build your application’s UI to be completely distinct, leveraging Noonian to organize the Angular
components, and for its data APIs and web services.

1.2 Getting Started

This section will guide you through the process of installing Noonian and its dependencies, and setting up a fresh
instance.

These instructions should generally apply to Linux, Windows, and MacOS hosts.

3

Noonian Documentation, Release 0.9.1

1.2.1 Installation

The dependencies to required by Noonian are:

1. Node.js

2. MongoDB

3. bower

Mongo DB

Follow the instructions in the MongoDB documentation to get MongoDB installed on your system.

Ideally, you will be able to perform a system-wide installation and run it as a service. However, if you do not have root
access to the machine on which you are running, it is possible to run it from a directory under user home directory.

Node.js

Package managers provide the easiest way to get the latest version installed on your system. The nodejs website
provides a comprehensive list of available packages for most operating system hosts.

The Node.js installation includes the Node Package Manger npm <https://npmjs.com>, which will be used for the rest
of the installation process.

Bower

At the commandline, install bower globally using npm:

npm install -g bower

If you performed a system-wide node install, you’ll need to perform the above command as the root or administrative
user.

Noonian

At the commandline, install noonian globally with npm:

npm install -g noonian

NOTE: if you are installing to a system-wide node install (as opposed to a node installation that is owned by a
non-root user), there may be issues installing dependencies compiled via node-gyp. To get around the issue, use the
“unsafe-perm” parameter:

npm install --unsafe-perm -g noonian

This will be resovled in a future version that will have refactored out any dependencies that are not pure javascript.

4 Chapter 1. Development Guide

https://nodejs.org/en/download/
https://www.mongodb.com/download-center?jmp=nav#community
https://bower.io
https://docs.mongodb.com/manual/installation/?jmp=footer&_ga=2.23881914.1626274738.1558626728-547197231.1550946579#mongodb-community-edition-installation-tutorials
https://nodejs.org/en/download/package-manager/

Noonian Documentation, Release 0.9.1

1.2.2 Instance Setup

First, create a directory for your instance, and make it your current working directory.

mkdir my-noonian-instance
cd my-noonian-instance

Then use the Noonian CLI to initialize the directory as a noonian instance:

noonian init my-instance

This will create a new file instance-config.js, which may be edited to configure the instance.

Edit the configuration file, and then use the CLI to bootstrap the database for the instance:

noonian bootstrap -p adminPassword

This will initialize the configured database with the core system, setting the initial password for admin to “adminPass-
word”.

Use the CLI to start the instance:

noonian start

This will start the instance as a background service (forked process), and direct stdout and stderr to stdout.log and
stderr.log.

You may stop it with the CLI as well:

noonian stop my-instance

(if your current working directory is the instance directory, the “my-instance” can be omitted)

1.3 A Tour of the DBUI

Noonian’s graphical user interface is referred to as DBUI: an initialism for “DataBase User Interface”.

The DBUI is what you see when you log in, and provides all of the screens for viewing and editing Business Objects
in the system. It provides a rich interface for managing your data, and is designed to serve as a starting point for your
database application.

This section will provide a brief introduction to the overall layout and some basic features built in to the DBUI.

When you first log in to a fresh instance, you are greeted with the default home screen:

1.3. A Tour of the DBUI 5

Noonian Documentation, Release 0.9.1

At the top we’ve got the navbar, on the left we’ve got the sidebar, and the majority of the screen is our main content
area.

1.3.1 The Navbar

The top bar we’ll refer to as the navbar (this is by convention; in actuality most navigation in a Noonian system occurs
via the sidebar)

Starting from the left, the navbar components are:

Page Title

Displays the configured instance name. When clicked, takes user to the configurable “home” screen,
which is the same screen displayed when the user first logs in.

System Menu

To the right of the title, the configured dropdown menus are displayed. Menus can be customized based on user role.

The System menu is the default navbar menu for the system admin role, and shows logical groupings of all Business
Object classes in the system.

Notifications

The bell icon on the right-hand side of the navbar contains a list of alert messages that the system has displayed to the
user during their session.

User Menu

The rightmost icon on the navbar is for user profile management (password reset, etc.) and log-out.

6 Chapter 1. Development Guide

Noonian Documentation, Release 0.9.1

1.3.2 The Sidebar

The sidebar is the primary mechanism by which the user navigates a Noonian system. The content of the sidebar is
customizable based on user role.

The default sidebar for the system admin role is the Developer Menu, providing access to the components used for
developing a Noonian application.

Gear Menu

The gear icon on the upper left-hand side of the sidebar allows the user to select which sidebar menu is displayed.

Additionally, it provides an option to collapse all submenus on the sidebar.

Minimize and Expand

The double chevron icon on the top right of the sidebar provides a way to reduce the size of the sidebar. Clicking it
reduces the display to show only icons for each submenu title. In minimized mode, a submenu is exposed when the
mouse hovers over its submenu icon.

1.3. A Tour of the DBUI 7

Noonian Documentation, Release 0.9.1

1.3.3 Home Screen

When the user initially logs in, the main content area is populated with a configurable home screen. This is the same
screen that is shown when the user clicks the title on top left of the navbar.

The default home screen on a fresh instance provides information on how to customize it.

1.3.4 List, Edit, and View Business Objects

The core functionality of the Noonan DBUI is in editing, viewing and querying Business Objects in the database.
There are 3 primary screens for doing so: list, edit, and view.

List

The list screen displays a list of Business Objects in the system. It includes search and query tools and configurable
action buttons.

It happens that all of the links on the Developer Menu actually link to a list screen. As an example, let’s take a look at
the configuration list, since there are a number of objects to be seen on a fresh instance:

You see a filtered list of Config Business Objects in the system, and several buttons and tools.

8 Chapter 1. Development Guide

Noonian Documentation, Release 0.9.1

Action Bar Shows buttons for configured actions for the current perspective.

Search/Query Tool Allows for a quick text search, or opening the Query Builder to perform more sophisticated query
on the data.

Gear Menu Shows a dropdown to perform table-related actions, such as editing the displayed columns, or refreshing
or exporting the data.

Record Actions Shows record-specific actions that can be invoked for a specific row. The View and Edit actions are
generally present for the default list perspectives.

Edit

The edit screen displays a form for editing a single Business Object. It includes layout editing tools and configurable
action buttons.

As an example, let’s take a look at an edit screen for a User Business Object:

Action Bar Shows buttons for configured actions for the current perspective.

Layout Editor Shows a dialog that allows the user to change the fields displayed and the layout of the form.

Record Actions Shows record-specific actions that can be invoked for the object being edited. The Save, Delete,
View, and Export actions are generally present for the default edit perspectives.

1.3. A Tour of the DBUI 9

Noonian Documentation, Release 0.9.1

View

The view screen is very similar to an edit screen, the obvious difference being the editability of the displayed Business
Object.

As an example, let’s look at the corresponding view for the User object we examined above. Use the View button
from the edit screen:

Action Bar Shows buttons for configured actions for the current perspective.

Layout Editor Shows a dialog that allows the user to change the fields displayed and the layout of the form.

Record Actions Shows record-specific actions that can be invoked for the object being edited. The Edit, Delete,
Duplicate, and Export actions are generally present for the default view perspectives.

1.4 Data Definition

1.4.1 The Business Object

Business Objects are the basic building blocks of any Noonian application. Defining a Business Object is akin to
defining a database table in the SQL world, and resembles class definition in the Object Oriented Programming world.

In Noonian, you define the the data schema for your application by creating a set of Business Object Definitions.

When you create a Business Object Definition, you’re defining structure for a particular class of Business Object that
you want to persist.

That class of Business Object you defined translates to several components in a Noonian system:

1. A corresponding collection in MongoDB that contains the persisted objects

2. An API within the server-side Node.js environment for querying, reading, and updating the objects

3. An API provided by an Angular.js service that allows you to query, read and update from the client-side.

4. A set of screens for viewing, querying, and updating the objects within the Angular.js front-end, called the
DBUI.

10 Chapter 1. Development Guide

Noonian Documentation, Release 0.9.1

1.4.2 Creating a Business Object Definition

Expand the sidebar menu Data Definition / Serverside Dev; and select BusinessObjectDefs

Fig. 1: BusinessObjectDefs Menu

You are shown the list of BusinessObjectDef’s in the system. Select the New button at the top to create a new one.

Fig. 2: BusinessObjectDef List -> New

You are shown a form that allows you to specify the fields for your new Business Object Definition. Let’s demonstrate
with a basic Person class:

The definition is simply a JSON object mapping each field name to its respective Type Descriptor :

{
"name":"string",
"birthday":"date",
"phone_number":"phone",
"address":"physical_address",
"profile_picture":"image",
"wears_glasses":"boolean",
"number_of_children":"integer",
"misc_notes":"text",

(continues on next page)

1.4. Data Definition 11

Noonian Documentation, Release 0.9.1

Fig. 3: New BusinessObjectDef

12 Chapter 1. Development Guide

Noonian Documentation, Release 0.9.1

(continued from previous page)

"user_account":{"type":"reference","ref_class":"User"}
}

Notice in the example, most of the types are described simple strings: “string”, “date”, “boolean”, etc. This is a
shorthand for those types that require no more than a single string. The user_account field is the exception: its type is
“reference”, so we need to specify what class of objects it should reference.

Also perhaps you’ve noticed how the fields “name” and “misc_notes”, have the types “string” and “text”, and you’re
wondering the purpose of the distinction - isn’t a “text” field is just a long string? Indeed it is! However, by calling it
a “text” field, we are 1) creating a more precise description, 2) telling the display logic to use the larger text block for
editing it, and 3) telling the system to index it differently.

Let’s go ahead and save the BusinessObjectDef. Notice how those types get expanded after you save:

{
"name": {
"type": "string"

},
"birthday": {
"type": "date"

},
"phone_number": {
"type": "phone"

},
"address": {
"type": "physical_address"

},
"profile_picture": {
"type": "image"

},
"wears_glasses": {
"type": "boolean"

},
"number_of_children": {
"type": "integer"

},
"misc_notes": {
"type": "text"

},
"user_account": {
"type": "reference",
"ref_class": "User"

}
}

When you save the a BusinessObjectDef, any single-string values get replaced by a full Type Descriptor. The Type
Descriptor fully describes a field’s type, and at its simplest consists of a single “type” property. Other properties
on a Type Descriptor add neccessary detail in describing the fields type. Some are mandatory (e.g. “ref_class” for a
reference field) , and others are optional (e.g. you may specify a minimum or maximum value of an integer field with
a min or max property.)

Please see the reference page for Field Types for a complete list of available field types and their respective type
descriptor properties.

1.4. Data Definition 13

Noonian Documentation, Release 0.9.1

1.4.3 Indexing

coming soon

Todo: pending implementation of BusinessObjectDef index specification

1.5 Basics of Building a DBUI Application

This section will guide you through the key concepts needed to build an application in the DBUI.

1.5.1 Perspectives and Layouts

The primary screens in the DBUI are the List, Edit, and View screens. When we are looking at one of these screens,
we are in fact looking at Business Object data from a particular perspective.

A *perspective* has a name, and contains the information about what fields to show and how to lay them out, what
actions and buttons to display, any filtering and sorting to apply, and so on.

You can always tell the name of the perspective you’re looking at by looking at the end of the URL:

/list/BusinessObjectClass/PERSPECTIVE_NAME

/view/BusinessObjectClass/OBJECT_ID/PERSPECTIVE_NAME

/edit/BusinessObjectClass/OBJECT_ID/PERSPECTIVE_NAME

List Perspectives

View and Edit Perspectives

Editing Perspective Data Directly

Perspectives are stored in the database as *Config* Business Objects, with keys named as follows:

sys.dbui.perspective.PERSPECTIVE_NAME.BusinessObjectClass

Perspective data can be viewed and edited directly by going through the DBUI Developer Menu, under *DBUI Cus-
tomization* -> *Perspectives*

Wildcard Perspectives

1.5.2 Menus

TODO

14 Chapter 1. Development Guide

Noonian Documentation, Release 0.9.1

1.5.3 Custom Pages

How to create one

How to navigate via menu item

How to navigate via uiRouter state change

1.5.4 UI Actions

1.5.5 Configuration

Todo: Configuration relevant to development-guide; focus should be on using it within your code, not what specfic
keys are for and how user/role customization works (link to sys and dbui2 package reference for that)

Customization

Todo: sys pacakge reference - dev guide should link where needed

Role-based

User-based

Important Configuration Items

Todo: The detailed reference for DBUI configuration items belongs w/in the doc for the actual sys.dbui2 package

Instance Name

Home Action

Navbar Menu

Sidebar Menu

Default Paging Settings

1.6 Adding Business Logic

This section is will walk you through the structures available to you when developing business logic in your Noonian
application.

1.6. Adding Business Logic 15

Noonian Documentation, Release 0.9.1

1.6.1 Fundamentals

Developing the server-side business logic in a Noonian application involves creating business objects containing your
code.

1.6.2 Data Triggers

TODO

1.6.3 Web Services

TODO

1.6.4 Code Modules

TODO

1.6.5 Member Functions

TODO

1.6.6 Schedule Triggers

TODO

1.7 Adding Users and Roles

1.7.1 Menus and Perspectives

TODO

1.7.2 Data Access Controls

TODO

1.8 Installing and Building Packages

TODO

16 Chapter 1. Development Guide

Noonian Documentation, Release 0.9.1

1.9 Documentation

Most of the Business Objects you create in the process of building an application have a Documentation field you can
use to include relevant documentation for the respective components. These fields support JSDoc and reStructuredText,
and can be used to generate API and development documenation for your Noonian applications.

TODO

Todo: pending implementation of Noonian Doc Generation

..todo:: Application Diagrams add-on

1.10 Application and Unit Testing

Noonian integrates Jasmine, Selenium, and Protractor for creating unit tests for your applications.

TODO

Todo: Pending implementation of Jasmine/Selenium/Protractor integration

1.11 Logging

TODO

1.12 Extended DBUI Features

This section takes you through several useful DBUI features not yet mentioned in this guide.

1.12.1 DBUI Pivot Page

TODO

1.12.2 Reporting

TODO

1.9. Documentation 17

Noonian Documentation, Release 0.9.1

1.12.3 Internationalization

TODO

1.13 Building a Non-DBUI Angular Application

The guide thus far has show how it is possible to build a full-featured application by extending and customizing the
DBUI. This section describes how you can use Noonian to build an Angular.js application that is not based on DBUI.
In this scenario, it is still possible to leverage the DBUI and Noonian’s data layer and APIs for your application.

A practical example of a use case might be a lightweight Angular-based front-end that leverages Noonian for the data
layer and business logic, and the DBUI as an administrative back-end.

Note: A basic understanding of Angular.js compoenents is assumed for this section

1.13.1 Angular Components

1.14 Advanced Customization

This section is describes how to extend the fundamental objects of Noonian and the DBUI.

1.14.1 Custom Field Types

TODO

1.14.2 Custom Query Operations

TODO

1.15 Indices and tables

• Glossary

• genindex

• modindex

• search

1.15.1 Glossary

Noonian Terminology

Business Object A persisted data object.

DBUI The graphical user interface of Noonian: “DataBase User Interface”

Perspective A configuration object that describes how to render a DBUI screen: layout, table columns, action buttons,
etc.

18 Chapter 1. Development Guide

Noonian Documentation, Release 0.9.1

RecordAction An action within the DBUI that is tied to a Business Object when invoked.

Related Jargon

CRUD The fundamental database operations: Create Read Update Delete

Free Software Free as in “Free Speech” (liberty), not as in “Free Beer” (price)

MEAN A stack of technologies for web development that consists of Javascript and JSON for both front and back-
end: M = MongoDB E = Express A = AngularJS N = Node.js

1.15. Indices and tables 19

https://www.fsf.org/about/what-is-free-software

Noonian Documentation, Release 0.9.1

20 Chapter 1. Development Guide

CHAPTER

TWO

NOONIAN REFERENCE

Detailed technical documentation for Noonian development and administration.

2.1 Admin, Configuration, and Deployment

2.1.1 Instance Configuration

Configuration for a Noonian instance is stored in a javascript file in the base of the instance directory: instance-
config.js. A default is generated from a template when an instance is initialized using the CLI.

Configuration File

Required Parameters

At instance initialization, all required parameters are populated/generated with reasonable defaults.

instanceName

A name used for referring to the instance via the CLI. Should be unique across instances on a server for the CLI to
work properly.

instanceId

An identifier used in versioning the persisted business objects. It should be short; by default it matches the instance
name.

serverListen

TCP Port and address on which to bind. On initialization, the Noonian CLI examines the config files for all configured
instances on the machine and chooses a port number by adding 1 to the highest one found.

serverListen: {
port: 11100,
host: '127.0.0.1'

}

mongo

MongoDB connection string and options. Initialization defaults to localhost

mongo: {
uri: 'mongodb://localhost/noonian-myinstance'

}

21

Noonian Documentation, Release 0.9.1

secrets

Secret string used for signing the auth tokens for authentication. Initialization generates a random UUID.

secrets: {
session: '1f6885e7-36a8-4dd9-909e-d585e5bd0879'

}

Logging

By default, log level is set to debug, writing logs to instance.log (all log messages) and error.log (only error messages).

See Configuration for more details on logging configuration.

Optional Parameters

urlBase (string)

A path under which the noonian instance will be served.

Use urlBase if noonian will be served to a path other than the root of the domain. For example, one domain can host
multiple noonian instances as such: mydomain.com/instance1, mydomain.com/instance2

enableBackRefs

Enable “back reference” processing on reference fields.

enableHistory

Instance Directory Structure

The files and directories in the instance directory are described below.

• instance-config.js

• client - base directory for static content served from the filesystem by the webserver (this directory is checked
BEFORE client directory of the core app listed above) * bower_components - holds bower dependencies of
packages installed on this instance

• node_modules - holds any npm dependencies of packages installed on this instance

• [pkg-key] - if package building with filesystem sync is enabled, data updates are synced to this directory

2.1.2 Command Line Interface

Usage: noonian [options] [command]

Options:
-V, --version output the version number
-h, --help output usage information

Commands:
start [options] [instanceName] launch an instance
stop [options] [instanceName] stop a running instance
restart [options] [instanceName] restart a running instance
env [options] [instanceName] show environment variables for launching an

→˓instance (returns source-able list of variable export lines) (continues on next page)

22 Chapter 2. Noonian Reference

Noonian Documentation, Release 0.9.1

(continued from previous page)

list list configured instances
status list the currently-running Noonian instances
startall Start all of the configured Noonian instances
init [options] <instanceName> initialize directory for a instance
bootstrap [options] [instanceName] bootstrap database for an instance
add [options] add an existing instance to the index
remove <instanceName> remove an instance from the instance index
dbdump [options] [instanceName] call mongodump to create a dump of the database
dbshell [options] [instanceName] start mongo shell for the instance's database
open [options] [instanceName] launch browser window
watch [options] [instanceName] watch stdout and stderr of an instance
pm2-eco generate pm2 ecosystem JSON (print to stdout)

Instance Set-up

init, bootstrap, add, remove

Process Management

The CLI contains basic functionality for managing Noonian instances on the local machine. These features are meant
for use in a development envrionment. For a production deployment, either a Docker container or a more sophisticated
process management tool such as PM2 is recommended.

Start / Stop / Restart

Status

PM2 Ecosystem Generation

Utilities

Database Dump

Database Shell

Get Environment Variables

Installing Bash Autocompletion

The Noonian CLI has a bash auto-completion script so commands and instance names can be auto-completed at the
command prompt.

If you have root access to the system, you can create a symbolic link in /etc/bash_completion.d to the NOO-
NIAN_HOME/template/bash_completion.d

ln -s /path/to/installation/node_modules/noonian/template/bash_completion.sh /etc/
→˓bash_completion.d/noonian

If you do not have root access, you can simply source the bash_completion.sh in your .bashrc. (Alternatively, refer to
this discussion for other options)

2.1. Admin, Configuration, and Deployment 23

https://serverfault.com/questions/506612/standard-place-for-user-defined-bash-completion-d-scripts

Noonian Documentation, Release 0.9.1

2.1.3 Deployment

This document describes various options for production deployment of a Noonian instance.

PM2

Run Noonian as a service using PM2

Proxy through Apache

Docker

There are multiple scenarios for deploying Noonian using docker:

• All-in-one, single instance

• All-in-one, multi-instance

• External MongoDB, single-instance Noonian container

• External MongoDB, multi-instance Noonian container

All-in-one Container

Full Node + MongoDB + Noonian stack in one image/container.

Docker-Compose Stack

Two separate containers: one MongoDB, one Node.js/Noonian

2.2 Development Reference

This documentation provides detailed technical information for Noonian development to supplement the API docu-
mentation.

2.2.1 Data Model

This section covers defining Business Objects as well as using the server-side persistence layer for accessing and
manipulating those objects.

24 Chapter 2. Noonian Reference

https://pm2.keymetrics.io/

Noonian Documentation, Release 0.9.1

Business Object Definition

The data layer of a Noonian application is defined by creating a collection of BusinessObjectDef objects.

Persistence API

The API is modelled after the Mongo shell, wherein each collection in the database corresponds to a property on the
db object, and that property contains the full CRUD interface for working with that collection:

//Mongo shell
db.SomeCollection.find(...)

The db API in Noonian functions in a similar fashion. Each Business Object Definition (BusinessObjectDef) in the
system corresponds to a property on the db object, and that property contains the full CRUD interface for working
with those Business Objects:

//Server-side Noonian code
db.SomeBusinessObject.find(...).then(resultList=>{...})

These properties on the db object are called the Business Object Models, and are in fact augmented instances of
Model from the mongoose library. This documentation will cover the most important functions, but the full API can
be referenced on the mongoose project website (the current version of Noonian utilizes mongoose v5.9).

Differences from Mongo and Mongoose

An understanding of the MongoDB shell operations and the mongoose API translates to an almost complete under-
standing of the Noonian persistence API. This section describes where Noonian differs from one or the other.

Noonian and Mongoose are Promise-Based

The objects returned when running operations in the mongo shell generally provide synchronous access to the data.
For example:

> u = db.User.findOne({name:'admin'});
> print(u.name);
admin
>

Noonian/Mongoose run asynchronously utilizing promises:

db.User.findOne({name:admin}).then(u=>{
console.log(u.name);

});

2.2. Development Reference 25

https://mongoosejs.com/docs/api/model.html
https://docs.mongodb.com/manual/crud/
https://mongoosejs.com/docs/api/model.html

Noonian Documentation, Release 0.9.1

Noonian and Mongoose are Schema-Based

Construct objects instead of using “insert”.

Metadata

Inheritance

Other Internals

• Data Triggers

• Field pre/post processing

• ID Generation

Creation/Insertion

Query/Lookup

Deletion

Aggregation Pipeline

2.2.2 Indexing

TODO

2.2.3 Query Ops

TODO

2.2.4 References

TODO

2.2.5 Config

Server/instance config specifications

Detailed description of all “sys.” configuration items, but not the dbui ones

sys.urlConfig sys.two_factor_auth sys.password_complexity

Todo: clearly deliniate noonian core from the sys package: core should be refactored to put core-specific config (e.g.
the above 3) into instance-config; config that drives functionality within the sys package should be in noonian config

26 Chapter 2. Noonian Reference

Noonian Documentation, Release 0.9.1

2.2.6 Logging

Noonian integrates the winston package for javascript logging, and provides functionality for creating and configuring
a hierarchy of named loggers.

Configuration

Basic Configuration

Basic logging configuration can be set in instance-config.js using either the key logLevel or loggers.

logLevel

Simplest configuration, specifying only the log level. Possible values are:

• error

• warn

• info

• verbose

• debug

• silly

All log messages are written to the file instance.log, and error messages are written to the file error.log.

loggers

Todo: Allows for more control over which levels go to which targes, and some customization of log message
formatting.

Advanced Configuration

Todo: For more control over logging transports and formatting, the file logging-config.js in the instance directory
may be used to incorporate arbitrary winston loggers into Noonian.

Logger Naming

Loggers can be named in a similar hierarchical fashion as is done with apache log4j.

The name of the logger is included in messages written by that logger.

Todo: Loggers can be enabled, disabled, and configured by name.

2.2. Development Reference 27

https://github.com/winstonjs/winston
https://logging.apache.org/log4j/2.0/manual/architecture.html

Noonian Documentation, Release 0.9.1

2.2.7 Auth

TODO

2.2.8 Data Export

TODO

2.2.9 GridFS

TODO

2.2.10 Packaging

2.2.11 Web Sockets

TODO

2.3 Noonian Core API

This section documents the API for the code belonging to the Noonian server-side core. The core is that code that is
installed when you run npm install.

2.3.1 Authorization and Authentication

Injectable as: auth

Provides functionality around user authentication, role checking, and data access permissions.

getCurrentUser(req)
Gets the User BusinessObject for the user currently logged in

Arguments

• req – the request object (Express JS)

Returns Promise.<User> – resolving to user account associated with the request, or false if none

updateUserPassword(req, newPassword)
Update password for a user; checks configured password complexity requirements if applicable.

Arguments

• req – the request object (Express JS)

• newPassword (string) –

Returns Promise.<{"success"}> –

getCurrentUserRoles(req)
Get roles for current user.

Arguments

• req – the request object (Express JS)

28 Chapter 2. Noonian Reference

Noonian Documentation, Release 0.9.1

Returns Promise.<Array.<string>> – array of Role ids

checkRolesForUser(user, rolespec, noShortCircuit)
Check roles of a user account to determine if fullfills a role specficiation. If user has ROLE_SYSADMIN, it
will automatically succeeds unless noShortCircuit is enabled.

Arguments

• user (BusinessObject.<User>) – user Business Object

• rolespec (Array.<string>) – list of role ids

• noShortCircuit (boolean) – don’t short-circut check for ROLE_SYSADMIN

Returns boolean – true if user passes role check

checkRoles(req, rolespec)
Check roles of a user account to determine if fullfills a role specficiation. If user has ROLE_SYSADMIN, it
will automatically succeed.

Arguments

• req – the request object (Express JS)

• rolespec (Array.<string>) – list of role ids

Returns boolean – Promise<> resolves to true on pass; rejects on failure

aggregateReadDacs(req, TargetBoModel)
Pulls together Read DACs that apply to TargetBoModel and the current user’s roles.

Arguments

• req – the request object (Express JS)

• TargetBoModel – the Business Object model

Returns Promise.<{{condition, fieldRestrictions}}> – A promise resolving to aggregated DataAc-
cessControl

aggregateUpdateDacs(req, TargetBoModel)
Pulls together Update DACs that apply to TargetBoModel and the current user’s roles.

Arguments

• req – the request object (Express JS)

• TargetBoModel – the Business Object model

Returns Promise.<{{condition, fieldRestrictions}}> – A promise resolving to aggregated DataAc-
cessControl

aggregateCreateDacs(req, TargetBoModel)
Pulls together Create DACs that apply to TargetBoModel and the current user’s roles.

Arguments

• req – the request object (Express JS)

• TargetBoModel – the Business Object model

Returns Promise.<{{condition, fieldRestrictions}}> – A promise resolving to aggregated DataAc-
cessControl

aggregateDeleteDacs(req, TargetBoModel)
Pulls together Delete DACs that apply to TargetBoModel and the current user’s roles.

Arguments

2.3. Noonian Core API 29

Noonian Documentation, Release 0.9.1

• req – the request object (Express JS)

• TargetBoModel – the Business Object model

Returns Promise.<{{condition, fieldRestrictions}}> – A promise resolving to aggregated DataAc-
cessControl

checkCondition(condObj, targetObject)
Utility to check a query condition against an object; used for conditional DACs

Arguments

• condObj (object) –

• targetObject (object) –

checkReadDacs(req, TargetBoModel, query)
Check Read DACs for a given user, BusinessObject class, and query. Returns a promise that either: a) Resolves
to a query that has been modified to restrict access based on applicable DACs, or b) Rejects when DACs don’t
allow read access to the requested TargetBoModel

Arguments

• req – the request object (Express JS)

• TargetBoModel – the Business Object model

• query (object) – the original query

Returns Promise –

2.3.2 Data Source

Injectable as: db

The server-side api for retrieving and updating Business Objects.

db contains all of the Business Object Models for interfacing with the persistence layer, as described in Data Model

Todo: Document the Business Object Model’s enhanced mongoose API in mongoose_intercept and add a bo-
model.rst

generateId()
Generates a random UUID and returns in URL-safe base64.

Returns string – new v4 URL-safe base64-encoded UUID

_svc
Contains references to datasource submodules: field types, data triggers, query operations, gridFS access, refer-
ence processing, and package building/installation.

30 Chapter 2. Noonian Reference

Noonian Documentation, Release 0.9.1

db._svc.FieldTypeService

Contains logic pertaining to FieldType objects: mongoose schema elements, calling to/fromDb function.

Todo: this is really low-level functionality probably not suitable for published API

fieldtypes.init()
Initialize FieldType cache from DB.

Returns promise – fullfilled upon completion of caching

augmentTypeDescMap(tdm)
Augments a type descriptor map’s composites and arrays: flag composites, pull in definitions for named com-
posites, and recursively process (Mutates the provided object; Used in initialization of BO Metadata.)

Arguments

• tdm (object) – type descriptor map to process

Returns object – the same object that was passed in

class MongooseSchemaWrapper()

Arguments

• textIndex (boolean) – indicates whether text index is configured for the FieldType

• type (function) – the constructor object passed to mongoose

getSchemaElem(typeDescriptor)
Convert typeDescriptor object from BOD into mongoose schema element.

Arguments

• typeDescriptor (object) – the type descriptor to convert

Returns MongooseSchemaWrapper – the object used by the Mongoose schema for a field w/
provided typeDescriptor

getFieldTypeHandler(typeDescriptorOrId)
Get the actual FieldType object by ID or by type descriptor

Arguments

• typeDescriptorOrId (object|string) – type descriptor object or field type name

Returns FieldType –

processToDb(modelObj)
Preprocess fields for persistence to mongo using the respective FieldType’s to_db function

Arguments

• modelObj (BusinessObject) – object to process

processFromDb(modelObj)
Preprocess fields coming from mongo using the respective FieldType’s from_db function

Arguments

• modelObj (BusinessObject) – object to process

2.3. Noonian Core API 31

Noonian Documentation, Release 0.9.1

db._svc.DataTriggerService

All functionality to respond to data-update events to DataTriggers.

Todo: this is really low-level functionality probably not suitable for published API

datatrigger.init()
Initialize datatrigger servce

Returns Promise – resolving when init is complete

registerDataTrigger(key, bodId, beforeAfter, onCreate, onUpdate, onDelete, actionFn, priority)
Register a system-level trigger(triggers that are not DataTrigger business objects)

Arguments

• key (string) – key under which to register

• bodId (string) – id of BusinessObjectDef to which trigger applies; if null, applies glob-
ally

• beforeAfter (string) – ‘before’ or ‘after’

• onCreate (boolean) – trigger on create

• onUpdate (boolean) – trigger on update

• onDelete (boolean) – trigger on delete

• actionFn (function) – function to invoke

• priority (number) – relative priority

refreshDataTriggers()
Reload all DataTriggers from the database

Returns Promise resolving when reload is complete

processBeforeCreate(modelObj, keyFilter, saveOptions)
Process triggers for pre-create

Arguments

• modelObj (BusinessObject) – object for which to process triggers

• keyFilter (string) – regular expression string; process only those triggers whose key
matches

• saveOptions (object) – object passed to save() function; injected into DataTriggers’
action function

Returns Promise – resolves to: map of DataTrigger key to return/resolve value from respective
action invication

processBeforeUpdate(modelObj, keyFilter, saveOptions)
Process triggers for pre-update

Arguments

• modelObj (BusinessObject) – object for which to process triggers

• keyFilter (string) – regular expression string; process only those triggers whose key
matches

32 Chapter 2. Noonian Reference

Noonian Documentation, Release 0.9.1

• saveOptions (object) – object passed to save() function; injected into DataTriggers’
action function

Returns Promise – resolves to: map of DataTrigger key to return/resolve value from respective
action invication

processBeforeDelete(modelObj, keyFilter, saveOptions)
Process triggers for pre-delete

Arguments

• modelObj (BusinessObject) – object for which to process triggers

• keyFilter (string) – regular expression string; process only those triggers whose key
matches

• saveOptions (object) – object passed to save() function; injected into DataTriggers’
action function

Returns Promise – resolves to: map of DataTrigger key to return/resolve value from respective
action invication

processAfterCreate(modelObj, keyFilter, saveOptions)
Process triggers for post-create

Arguments

• modelObj (BusinessObject) – object for which to process triggers

• keyFilter (string) – regular expression string; process only those triggers whose key
matches

• saveOptions (object) – object passed to save() function; injected into DataTriggers’
action function

Returns Promise – resolves to: map of DataTrigger key to return/resolve value from respective
action invication

processAfterUpdate(modelObj, keyFilter, saveOptions)
Process triggers for post-update

Arguments

• modelObj (BusinessObject) – object for which to process triggers

• keyFilter (string) – regular expression string; process only those triggers whose key
matches

• saveOptions (object) – object passed to save() function; injected into DataTriggers’
action function

Returns Promise – resolves to: map of DataTrigger key to return/resolve value from respective
action invication

processAfterDelete(modelObj, keyFilter, saveOptions)
Process triggers for post-delete

Arguments

• modelObj (BusinessObject) – object for which to process triggers

• keyFilter (string) – regular expression string; process only those triggers whose key
matches

• saveOptions (object) – object passed to save() function; injected into DataTriggers’
action function

2.3. Noonian Core API 33

Noonian Documentation, Release 0.9.1

Returns Promise – resolves to: map of DataTrigger key to return/resolve value from respective
action invication

db._svc.QueryOpService

Funcationality around queries, query clauses and conditions

query.init()
Initialize service from QueryOp objects in the DB

Returns Promise – resolving when init complete

getQueryOpList(forType)
Look up relevant QueryOps for a given type

Arguments

• forType (string) – field type

Returns Array.<QueryOp> –

satisfiesCondition(modelObj, condition)
Evaluate a query condition against a model object

Arguments

• modelObj (BusinessObject) – object to evaluate against

• condition (object) – the query condition

Returns true iff modelObj satisifes query condition

applyNoonianContext(queryObj, context)

Search for any $noonian_context objects within the queryObj, replace with values from actual context.
Keys mapping to an object such as {$noonian_context:’dotted.spec.string’} will be mapped to con-
text.dotted.spec.string Mutates queryObj!

Arguments

• queryObj (object) –

• context (object) –

Returns null –

queryToMongo(queryObj, boMetaData)
Process any custom query operators to create a query for mongodb Mutates queryObj!

Arguments

• queryObj (object) –

• boMetaData (object) –

Returns null –

stringifyQuery(queryObj, boMetaData, fieldLabels, noonianContext)
Convert query object to human-readable string

Arguments

• queryObj (object) –

• boMetaData (object) – bo_meta_data of object to which queryObj applies

34 Chapter 2. Noonian Reference

Noonian Documentation, Release 0.9.1

• fieldLabels (object) – map field name to label

• noonianContext (object) – context to apply to labels

Returns string –

db._svc.GridFsService

Functionality around dealing with reading and writing files to/from Mongo’s gridfs. Wraps gridfs API adding noonian
metadata, id’s and logic.

Todo: need to refactor away from gridfs-stream: https://www.npmjs.com/package/mongoose-gridfs Updated mongo
api supports streaming: https://mongodb.github.io/node-mongodb-native/3.1/tutorials/gridfs/streaming/ ancient bug
report: https://github.com/aheckmann/gridfs-stream/issues/125

Todo: API is a little sloppy; saveFile creates a file by passing a readstream, writeFile creates a file by retreiving a
writeStream

gridfs.init()
Initialize gridfs servce

Returns Promise – resolving when init is complete

saveFile(readStream, metadata)
Stream a file to gridfs

Arguments

• readStream (stream.Readable) – node readable stream containing contents of file
to write

• metadata (Object) –

Returns Promise.<string> – file id that can later be used to getFile;

writeFile(metadata)
Open a write stream to a file; augments metadata with an attachment_id

Arguments

• metadata (Object) –

Returns stream.Writable – stream that receives file contents

getFile(fileId)
Retreive a file by id

Arguments

• fileId (string) –

Returns Promise.<{{readstream:stream.Readable, metadata:object}}> –

deleteFile(fileId)
Delete a file from gridfs

Arguments

• fileId (string) –

Returns Promise.<{{result:'success', file:fileId}}> –

2.3. Noonian Core API 35

https://www.npmjs.com/package/mongoose-gridfs
https://mongodb.github.io/node-mongodb-native/3.1/tutorials/gridfs/streaming/
https://github.com/aheckmann/gridfs-stream/issues/125

Noonian Documentation, Release 0.9.1

annotateIncomingRef(fileId, boClass, boId, field)
Add metadata to track incoming reference to a file

Arguments

• fileId (string) –

• boClass (string) – class name of BusinessObject containing reference

• boId (string) – id of BusinessObject containing reference

• field (string) – field name containing reference

Returns null

getAllFileMetadata()
Get all files in fs.files

Returns Promise.<object> – object mapping filenames to metadata.

exportFile(attachmentId, outPath)
Export an attachment from gridfs to the filesystem

Arguments

• attachmentId (string) –

• outPath (string) – fully-qualified filename of target file

Returns Promise – resolving to outPath when file write is completed

importFile(inPath, contentType)
Import a file from the filesystem

Arguments

• inPath (string) – fully-qualified path to file to import

• contentType (string) – ContentType of given file. if not provided, file extension is
used to detect

Returns Promise.<object> – resolving to metadata object which can be assigned to a field of type
“attachment”

cleanup()
Scan the database for files in gridfs that do not have any references from attachment fields, and delete them.

Returns Promise.<{{deleteCount:number, deleted:object}}> –

db._svc.RefService

Functionality around processing reference fields

Todo: this is really low-level functionality probably not suitable for published API

references.init(conf)
Initialize reference service

Returns Promsie – resolving when initialization is complete

repair()
Traverse all BusinessObjects in the system and catalog all references Rebuild IncomingRefModel table and
update all reference fields so that _disp and denormalized fields are up-to-date

36 Chapter 2. Noonian Reference

Noonian Documentation, Release 0.9.1

Returns Promise – resolving when repiar is complete

db._svc.PackagingService

Functionality around building, installing, versioning Noonian packages.

installBootstrapPackages()
Install packages identified in configuration “bootstrap”

Returns Promise – resolving when package is complete

Tracking Updates for Package Content

updateLogger(isCreate, isUpdate, isDelete)
Create an UpdateLog entry for an update. If filesystem sync is enabled, write files for the object

Arguments

• isCreate (boolean) –

• isUpdate (boolean) –

• isDelete (boolean) –

Returns Promise – resolving when operations are complete

importObject(className, obj, pacakgeRef)
Import a plain json object (originating from a package or file) into db, with special handling of BusinessObject-
Def’s and versioning. (used by both fs_sync and pkg_stream)

Arguments

• className (string) –

• obj (object) –

• pacakgeRef – reference to BusinessObjectPackage on who’s behalf this object is being
imported; if not present, no version checking will occur

Returns Promise.<BusinessObject> – the created/updated object

packageToFs(bopId)
Exports a package’s objects to filesystem, to begin filesystem sync and allow for collaboration/source control in
git

Arguments

• bopId (string) – id of BusinessObjectPackage

Returns Promise – resolving when export is complete

2.3. Noonian Core API 37

Noonian Documentation, Release 0.9.1

Processing Package Streams

checkPackage(metaObj, inProgress)
Check the package metaObj against the current sytem.

How the noonian dependency summary is built: configured RemotePackageRepositories are queried
to obtain metadata objects for all of the package’s noonian dependencies. Then those objects are
recursively checked, and the tree of results are flattened into a list, sorted in the order that they should
be installed.

Arguments

• metaObj (object) – metadata object from the BusinessObjectPackage

• inProgress – used for tracking recursive calls

Returns object – summary describing the package - basic package info (key, name, desc, version)
- installed version of that pkg (if applicable) - parameters requested by package to be collected
from user on install - list of dependencies for npm, bower, and noonian - list of check results of
noonian depenencies

getPackageMetadataFromStream(pkgReadStream)
Pull metadata element from Noonian package JSON stream; ignoring all other stream content

Arguments

• pkgReadStream (stream.Readable) – Noonian package JSON stream

Returns Promise.<object> – the metadata object

checkPackageStream(pkgReadStream)

Read package metadata from pkg stream and:

1) check its dependencies against what is installed

2) resolve to the user_parameters

Arguments

• pkgReadStream (stream.Readable) – Noonian package JSON stream

Returns Promise.<object> – the metadata object

installPackage(pkgReadStream, userParams, skipDep)
Install the package (and its dependencies) to this instance from json stream

Arguments

• pkgReadStream – node readable stream of package json

• userParams – object containing parameters to be passed to pacakges’ install functions
keyed by package key

• skipDep – skip dependency check/installation (mainly for use in recursive calls)

Returns Promise.<{{result, metaObj, dependencyResults, recursiveResults, functionRe-
sults}}> –

buildPackage(bopId, majorMinorPatch)

Run against a BusinessObjectPackage (BOP) record;

• builds the package file, incorporating all UpdateLog’s associated w/ the BOP

38 Chapter 2. Noonian Reference

Noonian Documentation, Release 0.9.1

• stores it in gridfs, sets as package_file attachment to BOP

• updates manifest and increments minor version on BOP record

Arguments

• bopId (string) – id of BusinessObjectPackage

• majorMinorPatch – which version component to increment

Returns Promise<string> gridfs file id of generated package

Internal Functions

Below are functions used internally for system initialization and package installation.

installBusinessObjectDef(bodObj)
Used internally for package installation. Creates or updates BOD in the database, and adds it to the Model
cache. If the BOD indicates it is a child class whose parent model is not yet in the cache, it stores it to be
installed on subsequent call for parent BOD

Todo: clean up return value to be more sensible

Arguments

• bodObj (object) – a plain-object representation of a BusinessObjectDef

Returns Promise.<(null|true)> – resolving to null when model is installed and initialization is com-
plete or true if awaiting parent class installation

bootstrapDatabase(adminPw)
Used internally by CLI. Bootstrap a clean database

Arguments

• adminPw (string) – password for admin account. If null, password is set to a newly-
generated UUID and printed to console.error

Returns Promise.<User> – business object for admin user

refreshModels()
Completely refresh data layer (called on package install). Delete all models in the cash, and reload from Busi-
nessObjectDefs and MemberFunctions in the database

Returns Promise – resolves when reload is complete

db.init(conf)
Initialize mongo connection and the entire data layer.

Arguments

• conf (object) – instance configuration to use

Returns Promise – resolved upon completion

2.3. Noonian Core API 39

Noonian Documentation, Release 0.9.1

2.3.3 Configuration

Injectable as: config

Provides access to the Noonian configuration store, as well as the running instance configuration.

Todo: Move this to a CodeModule in the sys package; make instanceConf injectable by itself

instanceConf
A reference to the instance configuration (instance-config.js)

getValue(key, defaultValue)
Retrieve a value from the config store

Arguments

• key (string) – config key

• defaultValue – value to return if key is not present in store

saveValue(key, value, userId)
Save a value to the config store. If userId is not null, a user-specific config key will be saved.

Arguments

• key (string) – config key

• value – value to save

• userId (string) – ID of User account

2.3.4 Logger

Injectable as: logger

API for accessing the Noonian logger. See Logging

logger.get(loggerName)
Get a logger. If loggerName is specified, a child of the rootLogger is created with specified name. Otherwise,
the system’s default logger is returned.

Arguments

• loggerName (string) – name of logger to retreive

Returns WinstonLogger –

2.3.5 Invoker

Injectable as: invoker

Utility for invoking functions server-side with custom and standard injections.

getParameterNames(fn)
Extracts names of parameters from a js function

Arguments

• fn (function) –

Returns Array.<string> – parameter names

40 Chapter 2. Noonian Reference

Noonian Documentation, Release 0.9.1

invokeInjected(fnToInvoke, injectedParamMap, fnThis)
invokes a function, injecting the arguments from injetedParamMap

Arguments

• fnToInvoke (function) – function to invoke

• injectedParamMap (object) – parameters to inject into invocation, keyed by name

• fnThis (object) – the this context provided on invocation

Returns the return value of the invoked function

invokeAndReturnPromise(fnToInvoke, injectedParamMap, fnThis)
invokes a function, injecting the arguments from injetedParamMap, wrapping return value of invocation in
promise (if it isn’t one already)

Arguments

• fnToInvoke (function) – function to invoke

• injectedParamMap (object) – parameters to inject into invocation, keyed by name

• fnThis (object) – the this context provided on invocation

Returns Promise resolving to return value of the invoked function

refreshCodeModules()
Refresh cache of CodeModules from database

Returns Promise resolving when refresh is complete

2.3.6 Business Object Metadata

All Business Object models and instances have a property _bo_meta_data, also accessible via the ES6 Symbol meta-
data. This property contains information about class name, field types, and inheritance.

BoMetaData()

An instance of BoMetaData is present on all Business Object models and instances keyed by _bo_meta_data,
as well as ES6 Symbol metadata

Usually this is only instantiated internally

2.3. Noonian Core API 41

Noonian Documentation, Release 0.9.1

42 Chapter 2. Noonian Reference

CHAPTER

THREE

INDICES AND TABLES

• Change Log

• genindex

• modindex

• search

3.1 Change Log

3.1.1 0.X.X | release date

Additions

• Item 1

• Item 2

Bug Fixes

• Item 1

• Item 2

3.2 GITLAB README

See noonian.readthedocs.io for Noonian documentation.

This directory contains the reStructuredText source for Noonian Documentation, and can be built using Sphinx.

This project is integrated with readthedocs.org, which automatically builds and deploys the documentation in this
directory.

43

https://noonian.readthedocs.io/
https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html
https://www.sphinx-doc.org/en/master/usage/quickstart.html
https://readthedocs.org/

Noonian Documentation, Release 0.9.1

3.2.1 How to build

The following is required to build this documentation:

1. Python and sphinx must be installed

2. pip packages listed in doc/requirements.txt must be installed

3. The npm package jsdoc must be installed globally, or locally w/ the jsdoc CLI on the path.

This project’s devDependencies includes jsdoc, so a full npm install will get it locally.

sphinx-build.sh adds jsdoc to the path and runs the sphinx makefile to build the HTML documentation.

44 Chapter 3. Indices and tables

INDEX

Symbols
_svc (None attribute), 30

A
aggregateCreateDacs() (built-in function), 29
aggregateDeleteDacs() (built-in function), 29
aggregateReadDacs() (built-in function), 29
aggregateUpdateDacs() (built-in function), 29
annotateIncomingRef() (built-in function), 35
applyNoonianContext() (built-in function), 34
augmentTypeDescMap() (built-in function), 31

B
BoMetaData() (built-in function), 41
bootstrapDatabase() (built-in function), 39
buildPackage() (built-in function), 38
Business Object, 18

C
checkCondition() (built-in function), 30
checkPackage() (built-in function), 38
checkPackageStream() (built-in function), 38
checkReadDacs() (built-in function), 30
checkRoles() (built-in function), 29
checkRolesForUser() (built-in function), 29
cleanup() (built-in function), 36
CRUD, 19

D
datatrigger.init() (datatrigger method), 32
db.init() (db method), 39
DBUI, 18
deleteFile() (built-in function), 35

E
exportFile() (built-in function), 36

F
fieldtypes.init() (fieldtypes method), 31
Free Software, 19

G
generateId() (built-in function), 30
getAllFileMetadata() (built-in function), 36
getCurrentUser() (built-in function), 28
getCurrentUserRoles() (built-in function), 28
getFieldTypeHandler() (built-in function), 31
getFile() (built-in function), 35
getPackageMetadataFromStream() (built-in

function), 38
getParameterNames() (built-in function), 40
getQueryOpList() (built-in function), 34
getSchemaElem() (built-in function), 31
getValue() (built-in function), 40
gridfs.init() (gridfs method), 35

I
importFile() (built-in function), 36
importObject() (built-in function), 37
installBootstrapPackages() (built-in func-

tion), 37
installBusinessObjectDef() (built-in func-

tion), 39
installPackage() (built-in function), 38
instanceConf (None attribute), 40
invokeAndReturnPromise() (built-in function),

41
invokeInjected() (built-in function), 40

L
logger.get() (logger method), 40

M
MEAN, 19
MongooseSchemaWrapper() (class), 31

P
packageToFs() (built-in function), 37
Perspective, 18
processAfterCreate() (built-in function), 33
processAfterDelete() (built-in function), 33
processAfterUpdate() (built-in function), 33

45

Noonian Documentation, Release 0.9.1

processBeforeCreate() (built-in function), 32
processBeforeDelete() (built-in function), 33
processBeforeUpdate() (built-in function), 32
processFromDb() (built-in function), 31
processToDb() (built-in function), 31

Q
query.init() (query method), 34
queryToMongo() (built-in function), 34

R
RecordAction, 19
references.init() (references method), 36
refreshCodeModules() (built-in function), 41
refreshDataTriggers() (built-in function), 32
refreshModels() (built-in function), 39
registerDataTrigger() (built-in function), 32
repair() (built-in function), 36

S
satisfiesCondition() (built-in function), 34
saveFile() (built-in function), 35
saveValue() (built-in function), 40
stringifyQuery() (built-in function), 34

U
updateLogger() (built-in function), 37
updateUserPassword() (built-in function), 28

W
writeFile() (built-in function), 35

46 Index

	Development Guide
	Introduction
	Getting Started
	A Tour of the DBUI
	Data Definition
	Basics of Building a DBUI Application
	Adding Business Logic
	Adding Users and Roles
	Installing and Building Packages
	Documentation
	Application and Unit Testing
	Logging
	Extended DBUI Features
	Building a Non-DBUI Angular Application
	Advanced Customization
	Indices and tables

	Noonian Reference
	Admin, Configuration, and Deployment
	Development Reference
	Noonian Core API

	Indices and tables
	Change Log
	GITLAB README

	Index

